
Getting Started in
RobotC

• // Comment
• task

• main()
• motor[]

• {}
• wait1Msec()

• ;
• =

• Header
• Code

• Compile
• Download

• Run

Learning Objectives
• Understand Motion

– Motors: How they work and respond.
– Fuses: Understand why they keep blowing

• Understand how to control Motors with a program
including
– Setting up the motors
– Reading the basic outline of a program
– Using commands for controlling motors

• motor[port1] = …
• motor[rightMotor] = …
• wait1Msec();

• Be able to write programs for a Robot to complete r
virtual challenges.

VEX Motion: Motors

●2-Wire Motor 393
●100 RPM

●No load

●Torque peaks at 13.5 in-lbs at
●0 RPM

●3.6 amp draw
●Continually at 3.375 in-lbs

●+/- 77 RPM
●0.9 amp draw

High Speed Gears

●High Speed Gearing: 60% faster
●Unscrew the motor and replace

internal gearing.
●160 RPM

● No Load

●Torque 8.4 in-lb in bursts
● 0 RPM
● 3.6 AMP

● Continually at 2.1 in-lbs
●+/- 123 RPM
●0.9 amp draw

Motor Controller

• Motor
Controller: 2-
Wire to 3-Wire

• Not needed for
motor ports 1
and 10

What happens when you floor it?

• Fuses you can
blow

• Motor: 3.6 Amp
– One Motor Stops

• Controller: 3 Amp
– One motor stops

• Cortex Port: 4
amps combined
with four other
ports. Robot Stops

Current (Amps) in
Yellow

Signal in Blue

Getting Started
• Open RobotC
• Select VEX 2.0 Cortex

Platform
– Robot-> Platform ->VEX 2.0

Cortex

• Make the robot compile to
Virtual Worlds
– Robot-> Compiler Target ->

Virtual Worlds

• Select Virtual World
– Window->Select Virtual

World to Use -> Curriculum
Companion

Your Robot

Configuring the Robot:
Focus on Motors

• Robot -> Motors and Sensors Setup
• Select the motor

– Currently can only purchase 393 Motors, also modify for internal
gearing (high speed, turbo speed)

• Naming Convention
– Rules

• Start with a letter
• No spaces, punctuation or reserved words (blue)

– Style
• Describes what it represents
• First letter is lowercase
• otherWordsStartWithUppercaseLetters

– For these motors
• leftMotor
• clawMotor
• armMotor
• rightMotor

Motors and Sensors Setup
Page

1) Select the
‘Motors’ tab.

6) Complete the setup for
the remaining motors.

3) Use the pull down
menus to select the

motor. 4) The left motor will need to
be reversed so the robot

does not go in circles.

5) Select the side
for drive motors.

7) Click on
Apply to

remember
the changes.

2) Name the
motor in the
desired port.

Naming Conventions
Rules

Start with a letter
No spaces, punctuation or reserved words (blue)

Style
Describes what it represents
First letter is lowercase
otherWordsStartWithUppercaseLetters

Code the setup creates
‘pre-processor directives’

Now we can start looking at
RobotC

• motor[motorName] = motorPower;
• wait1Msec(milliseconds);
• wait10Msec();

The Header
// In front of the line

makes this line a
comment

/* */ for multiple
line comments.

task main()
Marks the beginning of the
instructions for the Robot.
RobotC Is CaSe SeNsItIvE!

motor[motorB] = 127;
motor[] Used to select

the motor.
rightMotor = This

represents the place
where the motor is

attached.
motor[port10] = 127;
does the same thing.

= 127;
127 = full power
-127 = Reverse

0 = stop

wait1Msec(2000);
The robot continues what it

was doing for (2000)
milliseconds.

Two seconds in this case.

{}
Marks

the
begin
and

end of
a block
of code

Vocabulary
//

Comment
task

main()
motor[]
motorB.
motorC

{}
wait10Msec()

;
=

Header
Code

Compile
Download

Run

; is used to mark the end of a command.

What do you think this
code will do?

Code Break. Open
RobotC, configure the
motors and enter the

above code.

Testing the Program
• Compile the program

– Changes into machine code that the robot understands.

• Download the program
– Moving the machine language to your Virtual or Physical

Robot

• Virtual Robot
– Log in
– Select Robot
– Select Challenge
– Start Activity

Compiling the Program

Oops!

The compiler
catches syntax

(typing) errors and
gives some hints on

how to fix them.

Errors

Errors and hints
on the bottom of
the page. If you
click on an error
it will highlight
the line of the

error.

Red X = error
Yellow X = Warning

Any guesses on
how to fix these

mistakes?

Corrected and Compiled

Download the program

Since we set it up to map to Virtual
Worlds it will download to a Virtual

Robot.

Set up and Account with CS2N. It will track progress.
Can log in locally as a guest without tracking.

Information for CS2N

Select Your Robot

1) Robots Tab

2) We will be using the
Clawbot for discussion

Note: This shows the motors and sensors
attached to this robot

Robots Tab

Different
Robots

Available
Motors

and
Sensors on
the Robot
selected.

Physical
properties
of Robot

Challenges

Click to
Select

Different
Challenges

Summary of the
activity with a pdf

that includes details
about the challenge.

Achievements
Some

activities
allow you

Click on ‘Start
Activity’ to begin

We’ll Test Our Program in the
Utility -> Imperial Distance Utility

1) Utility Tab

2) Imperial
Distance Utility

3) Start Activity

Select Camera and Go

1) Follows Right
Scroll: Zoom

2) Top
Down
View

3) Free
Movement:
Scroll: Zoom
Click-Drag:

Rotate View

Show Sensors
Toggle

Play: Run the program

Reset

Home

Your Turn• Enter the Sample
program
– Motors and Sensors

Setup
– task main() and code

• Compile and correct
errors

• Download to the
virtual robot

• Run the program
• Can you modify this

program to…
• Write the letter Z? S?

Reference Website:
http://education.rec.ri.cmu.edu/products/cortex_video_trainer/
Click on Movement for much of the material covered

http://education.rec.ri.cmu.edu/products/cortex_video_trainer/

Teaching Strategy:
Grading Student Programming

Movement: Basketball Drills
Programming (10 Points = 100%)

___ Program compiles (4 points)
___ Header complete with names, description and date (2 points)
___ Code is properly indented (2 points)
___ Comments in the program describing the code (2 points)

Performance (10 points = 100%)
____ Completed

Online Time:
Movement Challenges

• Basketball Drills
• Sentry Simulation 1
• Sumo Bot
• Labyrinth Challenge

Basketball Drill Programming
Alternatives

• Using the Basketball Drills Activity to
introduce:

• Variables
• For loop
• Functions

Looking at Potential Solutions to Basketball Drills

• Pseudo Code
• Go forward long enough

to cross the first line
• Come back
• Go forward long enough

to cross the second line
• Come back
• Go forward lone enough

to cross the third line
• Come back

With enough guessing and checking,
you can get the correct values for the

wait1Msec()

Using a
Variable to help

with changes

If only there was
a tool in RobotC
that would let

the code repeat.

For loop in RobotC
• When to use it

– When you want to repeat something a set number of
times

• Syntax

for(int line = 1; line<=3; line++)
{

//Code repeated
}

Declares
an integer
variable

called line
and gives it

an initial
value of 1

If the line variable
is less than or

equal to 3 when it
reaches this, it will

do the loop
another time.

After completing the
loop, it will add 1 to the

variable line.

In this example it will repeat the
code inside the {} three times.

Once when line = 1
Once when line = 2

And
Once when line = 3

No loop vs. for
loop

For loop
example

Since line = 1 the first time through
this loop

line*timeToLine is the same as
1*2400 = 2400

the first time through this loop.

Then
2*2400 = 4800

the second time and

3*2400 = 7200
the third time.

RobotC does the math inside the ()
before executing the wait1Msec()

command

Using Functions to make the main
body easier to read

Main Body

Define the Functions
above the main body.

Function
Details

The function ‘Header’
void – It will not return a value
moveForward – The name of
this function. You get to pick
the name of you function as

long as:
-Starts with a letter

-No spaces or punctuation
-Not a reserved Word

And it should describe what it
is doing.

//+++++
moveForward

Comments added to
make the program
easier to read. You
can add details, …

int timeToMove
int – Sets an integer variable

timeToMove – An integer
variable that will store the

value sent to the function in
the call statement.

The code for the function goes
between {}. When the function

is finished the program will
return to the line after the call

statement.

Dry Run: Reading the Program

Main
Body

line

timeToMove

timeToMove

Online Time:
Movement Challenges

• Basketball Drills
• Sentry Simulation 1
• Sumo Bot
• Labyrinth Challenge

When you complete the
activities, incorporate
variables, loops, and

functions

References

• http://education.rec.ri.cmu.edu/products/cort
ex_video_trainer/

	Getting Started in RobotC
	Learning Objectives
	VEX Motion: Motors
	High Speed Gears
	Motor Controller
	What happens when you floor it?
	Getting Started
	Your Robot
	Configuring the Robot: Focus on Motors
	Motors and Sensors Setup Page
	Code the setup creates�‘pre-processor directives’
	Now we can start looking at RobotC
	Slide Number 13
	Testing the Program
	Compiling the Program
	Oops!
	Errors
	Corrected and Compiled
	Download the program
	Set up and Account with CS2N. It will track progress. Can log in locally as a guest without tracking.
	Information for CS2N
	Select Your Robot
	Robots Tab
	Challenges
	We’ll Test Our Program in the Utility -> Imperial Distance Utility
	Select Camera and Go
	Your Turn
	Teaching Strategy: �Grading Student Programming
	Online Time: Movement Challenges
	Basketball Drill Programming Alternatives
	Looking at Potential Solutions to Basketball Drills
	Using a Variable to help with changes
	For loop in RobotC
	No loop vs. for loop
	For loop example
	Using Functions to make the main body easier to read
	Function Details
	Dry Run: Reading the Program
	Online Time: Movement Challenges
	References

