
RobotC
Remote Control

Learning Objectives: Focusing on Virtual
World with Physical Examples
• Understand Real-Time Joystick Mapping
• Understand how to use timers
• Understand how to incorporate buttons into controlling robot arms

Getting Started in
RobotC

• // Comment
• task

• main()
• motor[]

• {}
• wait1Msec()

• ;
• =

• Header
• Code

• Compile
• Download

• Run

Learning Objectives
• Understand Motion

– Motors: How they work and respond.
– Fuses: Understand why they keep blowing

• Understand how to control Motors with a program

SuperQuest Salem
Motion

VEX Motion: Motors
● 2-Wire Motor 393

● 100 RPM
●Stall Torque 1.67 Nm

●Motor Controller: 2-Wire to 3-Wire
● Integrated Motor Encoder Sold Separately

●Counts ticks
● 627.2 Ticks per revolution

● High Speed Gearing (Comes with motor)
● 160 RPM
●Stall Torque 1.04 Nm
● 392 Ticks per Revolution

● Turbo Gear Set (Sold Separately)
● 240 RPM
●Stall Torque 0.7 Nm
● 261.333 Ticks per Revolution

393 Specifications
Max Current
and Torque
at 0 RPM

Max Power
(Combination
of Speed and
Torque) at 50

RPM.

Max
Efficiency.

Out/In at 85
RPM.

393 Torque – Speed Curve

More 393 Motor Facts

• 3.6 Amp Stall Current
• Built in Thermal Fuse.

– Will cut power when pulling 1.8A + for 7 +
seconds.

• Just wait for 10 seconds for fuse to cool.

– Will trip faster with higher current or warmer
temps.

• Designed to run continuously at 0.9 A.

Cortex Thermal
Fuses: Causes robot

to stop moving

• 4 amp combined draw from
ports 1-5

• 4 amp combined draw from
ports 6-10

• 4 amp combined draw from 4
ports on Power Expander

• Motor Controller: Max Current: 3
amps at 8.5 V

What happens when you floor it?

• Fuses you can blow
• Motor: 3.6 Amp

– One Motor Stops

• Controller: 3 Amp
– One motor stops

• Cortex Port: 4 amps
combined with four
other ports. Robot
Stops

Current (Amps) in
Yellow

Signal in Blue

Getting Started
• Open RobotC
• Select VEX 2.0 Cortex

Platform
– Robot-> Platform ->VEX 2.0

Cortex

• Make the robot compile to
Virtual Worlds
– Robot-> Compiler Target ->

Virtual Worlds

• Select Virtual World
– Window->Select Virtual

World to Use -> Curriculum
Companion

Configuring the Robot:
Focus on Motors

• Robot -> Motors and Sensors Setup
• Select the motor

– Currently can only purchase 393 Motors, also modify for internal
gearing (high speed, turbo speed)

• Naming Convention
– Rules

• Start with a letter
• No spaces, punctuation or reserved words (blue)

– Style
• Describes what it represents
• First letter is lowercase
• otherWordsStartWithUppercaseLetters

– For these motors
• leftMotor
• clawMotor
• armMotor
• rightMotor

Motors and Sensors Setup
Page

1) Select the
‘Motors’ tab.

6) Complete the setup for
the remaining motors.

3) Use the pull down
menus to select the

motor. 4) The left motor will need to
be reversed so the robot

does not go in circles.

5) Select the side
for drive motors.

7) Click on
Apply to

remember
the changes.

2) Name the
motor in the
desired port.

Naming Conventions
Rules

Start with a letter
No spaces, punctuation or reserved words (blue)

Style
Describes what it represents
First letter is lowercase
otherWordsStartWithUppercaseLetters

Code the setup creates
‘pre-processor directives’

Getting
Started…
Configuring
the motors
for
Squarebot

Only
configure

the motors
for now.

Looking at the Joysticks on the Remote: Physical Robot

Ch1
Right = 127
Middle = 0
Left = -127

Ch2
Up= 127

Middle = 0
Down = -127

Ch3
Up = 127

Middle = 0
Down = -127

Ch4
Right = 127
Middle = 0
Left = -127

Joystick Mapping: Virtual

Channel Left/Down Middle Right/Up

vexRT[Ch1] -127… 0 …127

vexRT[Ch2] -127… 0 …127

vexRT[Ch3] -127… 0 …127

vexRT[Ch4] -127… 0 …127

Channel Left/Down Middle Right/Up

joystick.joy1_x2 -127… 0 …127

joystick.joy1_y2 -127… 0 …127

joystick.joy1_y1 -127… 0 …127

joystick.joy1_x1 -127… 0 …127

<- Ch1 ->
Up - Ch2 - Dn

x1
y1

x2
y2

Joystick Mapping: Physical

//Place before task main()
#pragma debuggerWindows(“joystickSimple”);
#include “JoystickDriver.c”;

//Place inside the loop prior to joystick. Command
getJoystickSettings(joystick);

<- Ch4 ->
Up - Ch3 - Dn

Note: If
you copy-

paste
these into

your
program,
you will
need to

retype in
the “”.

Accessing the Value for the Remote Commands

Physical

vexRT[ChannelNumber]

Virtual
//Place before task main()
#pragma debuggerWindows(“joystickSimple”);
#include “JoystickDriver.c”;

//Place inside the loop prior to ‘joystick.’ Command
getJoystickSettings(joystick);

joystick.joy#_axis#

Example Using the Remote Values to Drive the Motors
Physical Robot Virtual World

These examples assume that the
programmer labeled their motors leftMotor

and rightMotor.

Can also send the value directly to the
motor port.

motor[port3] = vexRT[Ch3];

Online Time: Configure the motors and code the following

Physical Robot Virtual World

Make sure the motors are
configured:

leftMotor, port 3, reversed
rightMotor, port 2

Driving in the Virtual
World

• Compile and Download the
Program

• Select Virtual World (Utility –
Huge Table is good for
starters)

• Open ‘Joystick Control –Basic
‘ Debugger Window’

• Robot-> Debugger Windows -
> ‘Joystick Control – Basic’

• Refresh List if the remote
does not show up.

Robot Creeping?

Robot Creeping
• Y1 and Y2 values might not

go exactly to ‘0’ when you
release the buttons which
can cause your robot to
creep.

• Can correct this in the code.
• Pseudo Code

• If the joystick reading is close
to 0, say +/- 20

• Give a 0 power value to the
motor

• Else
• Give the joystick reading to the

motor

A Little RobotC Math to Help
RobotC Function Description Example

abs() Finds the absolute value of a
number

float x;
x = abs(5-10);

pow() Calculates a power float x;
x = pow(10,3);
//Calculates and returns 10^3

sqrt() Finds the square root of a
number

float x;
x = sqrt(8);

Physical:
Getting Rid of the Creep

Using a variable to make threshold
changes easier

Using the abs command to simplify the condition.
if (vexRT[Ch3] >(-threshold)) && (vexRT[Ch3] < (threshold))

Would give the same results.

Executes this line of code when the above condition is true.

Executes the commands in the ‘else’ when the above
condition is false.

Do the same for the
rightMotor

Virtual Getting Rid of the Creep
Add the pragma directive and include
file. If you copy and paste from the

PowerPoint you will need to retype in
the “”.

Add the
getJoystickSettings(joystick);

command inside the while loop.

Replaced
vexRT(Ch2) with joystick.joy1_y2

Replaced
vexRT(Ch3) with joystick.joy1_y1

More Control Options

• To fight motors timing out, you can modify the drive code to lower
the power sent to the motors.

• Go half-power
• Create a fancy equation that maps remote input to output. Had some math

wizzes that used a 5th degree polynomial to provide more control when going
slow.

• Can put together a bunch of ‘stepped’ if elses to give different power values
for different ranges of input values.

Physical
No Creep,
Half Power = more control

Half Power

Virtual
No Creep Half Power:

Half Power

Online Time: Test it on the
Utilities -> Huge Table

Buttons

• Learning Objectives
• Be able to use the buttons

to control motors on your
robot.

• Complete challenges that
incorporate buttons.

Joystick Buttons: Physical Buttons return a value of ‘1’ when pushed and ‘0’ when not
pushed

Button Description Example

5U Top button on back left vexRT[Btn5U]

5D Bottom button, back left vexRT[Btn5D]

6U Top button, back right vexRT[Btn6U]

6D Bottom button, back right vexRT[Btn6D]

7U Button 7 up vexRT[Btn7U]

7D Button 7 down vexRT[Btn7D]

7R Button 7 right vexRT[Btn7R]

7L Button 7 left vexRT[Btn7L]

8U Button 8 up vexRT[Btn8U]

8D Button 8 down vexRT[Btn8D]

8R Button 8 right vexRT[Btn8R]

8L Button 8 left vexRT[Btn8L]

Using the buttons to control the arm motor
• First we need

to go to
Motors and
Sensors setup
to configure
the arm and
claw motor.

• Clawbot
• Arm: Port 7
• Claw: Port 6

• Robot ->
Motors and
Sensors setup

1) Name and set the claw and arm
motors.

2) Reverse the Arm Motor for Virtual
Clawbot. Might need to reverse for

physical robot also.

3) Click Apply and OK when
finished.

Looking at Arm Control using buttons: Pseudo-Code

• If button 6U is pushed
• raise the arm (Send a signal of 127)

• Else if button 6D is pushed
• Lower the arm (Send a signal of -127)

• Else
• Stop the arm (Send a signal of 0)

Looking at the Arm: Pseudo-Code to Code
• If button 6U is pushed

• raise the arm (Send a signal of 127)

• Else if button 6D is pushed
• Lower the arm (Send a signal of -127)

• Else
• Stop the arm (Send a signal of 0)

Style Note: Indent between the {} to
make the code easier to read.

Virtual World Buttons

joy1Btn(4)

joy1Btn(1)

joy1Btn(3)

joy1Btn(2)

Mode

joy1Btn(9)
joy1Btn(8)

joy1Btn(6)

joy1Btn(7)

joy1Btn(10)

joy1Btn(12)

joy1Btn(11)

joy1Btn(5)

joy1_TopHat
7 0 1
6 -1 2
5 4 3

Joystick Buttons
Virtual World

Buttons return a value of ‘1’ when pushed and ‘0’ when not pushed, except the TopHat.

Button Description Example

1 Left joy1Btn(1)

2 Bottom joy1Btn(2)

3 Right joy1Btn(3)

4 Top joy1Btn(4)

5 Back, top left joy1Btn(5)

6 Back, top right joy1Btn(6)

7 Back, bottom left joy1Btn(7)

8 Back, bottom right joy1Btn(8)

9 Small button, top left joy1Btn(9)

10 Small button, top right joy1Btn(10)

11 Left joystick button joy1Btn(11)

12 Right joystick button joy1Btn(12)

TopHat Returns values -1 (Not pushed) or 0,
1, … 7 depending on which part is
pushed.

joystick.joy1_TopHatjoy1_TopHat
7 0 1
6 -1 2
5 4 3

Back to the Arm Movement Pseudo-Code but
for Virtual Remote

• If button 6 is pushed
• raise the arm (Send a signal of 127)

• Else if button 8 is pushed
• Lower the arm (Send a signal of -127)

• Else
• Stop the arm (Send a signal of 0)

Arm Pseudo-Code to Code: Virtual World
• If button 6 is pushed

• raise the arm (Send a signal of 127)

• Else if button 8 is pushed
• Lower the arm (Send a signal of -127)

• Else
• Stop the arm (Send a signal of 0)

Where does this
code go?

Since you want the
robot to continually

check for the buttons
being pressed, it

needs to go inside the
while(true) loop.

Claw Motor (For
clawbot)

• Pseudo Code
• If the back, top, left button

is pushed
• Close the claw (127)

• Else if the back-bottom-left
button is pushed

• Open the claw (-127)
• Else

• Leave the claw (0)

Virtual

Physical

	RobotC
	Learning Objectives: Focusing on Virtual World with Physical Examples
	Getting Started in RobotC
	Learning Objectives
	SuperQuest Salem
	VEX Motion: Motors
	393 Specifications
	393 Torque – Speed Curve
	More 393 Motor Facts
	Cortex Thermal Fuses: Causes robot to stop moving
	What happens when you floor it?
	Getting Started
	Configuring the Robot: Focus on Motors
	Motors and Sensors Setup Page
	Code the setup creates�‘pre-processor directives’
	Getting Started… Configuring the motors for Squarebot
	Looking at the Joysticks on the Remote: Physical Robot
	Joystick Mapping: Virtual
	Accessing the Value for the Remote Commands
	Example Using the Remote Values to Drive the Motors
	Online Time: Configure the motors and code the following
	Driving in the Virtual World
	Robot Creeping?
	Robot Creeping
	A Little RobotC Math to Help
	Physical:�Getting Rid of the Creep
	Virtual Getting Rid of the Creep
	More Control Options
	Physical�No Creep, �Half Power = more control
	Virtual�No Creep Half Power:
	Buttons
	Joystick Buttons: Physical
	Using the buttons to control the arm motor
	Looking at Arm Control using buttons: Pseudo-Code
	Looking at the Arm: Pseudo-Code to Code
	Virtual World Buttons
	Joystick Buttons�Virtual World
	Back to the Arm Movement Pseudo-Code but for Virtual Remote
	Arm Pseudo-Code to Code: Virtual World
	Where does this code go?
	Claw Motor (For clawbot)

